Device- and semi–device-independent random numbers based on noninequality paradox
نویسندگان
چکیده
منابع مشابه
Device-independent quantum key distribution based on Hardy's paradox
Ramij Rahaman, 2, ∗ Matthew G. Parker, † Piotr Mironowicz, 5, ‡ and Marcin Paw lowski § Department of Mathematics, University of Allahabad, Allahabad 211002, U.P., India Institute of Theoretical Physics & Astrophysics, University of Gdańsk, 80-952 Gdańsk, Poland Department of Informatics, University of Bergen, Post Box-7803, 5020, Bergen, Norway Department of Algorithms and System Modelling, Fa...
متن کاملON THE LAWS OF LARGE NUMBERS FOR DEPENDENT RANDOM VARIABLES
In this paper, we extend and generalize some recent results on the strong laws of large numbers (SLLN) for pairwise independent random variables [3]. No assumption is made concerning the existence of independence among the random variables (henceforth r.v.’s). Also Chandra’s result on Cesàro uniformly integrable r.v.’s is extended.
متن کاملOn independent domination numbers of grid and toroidal grid directed graphs
A subset $S$ of vertex set $V(D)$ is an {em indpendent dominating set} of $D$ if $S$ is both an independent and a dominating set of $D$. The {em indpendent domination number}, $i(D)$ is the cardinality of the smallest independent dominating set of $D$. In this paper we calculate the independent domination number of the { em cartesian product} of two {em directed paths} $P_m$ and $P_n$ for arbi...
متن کاملDrawing of Random Four-digit Numbers from Independent Tables of Random Two-digit Numbers in Selection of Random Sample
Drawing of random sample is one of the most important components of almost every. The scientific method of selecting a random sample consists of the use of random number table. Several tables of random numbers have already been constructed by the renowned researchers. Some of them are (in chronological order) due to Tippett [1], Mahalanobis [2], Kendall & Smith [3,4], Fisher & Yates [5], Hald [...
متن کاملLaws of Large Numbers for Random Linear
The computational solution of large scale linear programming problems contains various difficulties. One of the difficulties is to ensure numerical stability. There is another difficulty of a different nature, namely the original data, contains errors as well. In this paper, we show that the effect of the random errors in the original data has a diminishing tendency for the optimal value as the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review A
سال: 2015
ISSN: 1050-2947,1094-1622
DOI: 10.1103/physreva.92.022327